Roll No.

Total Printed Pages - 7

F-765

M. A./M.Sc. (THIRD SEMESTER) EXAMINATION, Dec. - Jan., 2021-22 (MATHEMATICS) PAPER THIRD (C) (FUZZY SET AND THEIR APPLICATION)

[Time: Three Hours] [Maximum Marks: 80]

Note: Attempt all sections as directed.

Section - A

(Objective/Multiple Choice Questions)

(1 mark each)

Note: Attempt all questions.

- 1. If A and B are two fuzzy sets in X, then for all $x \in X$, their standard fuzzy intersection is defined as $(A \cap B)(x) = \dots$.
- 2. If A and B are any two fuzzy sets in X, then $A \cup (A \cap B) = A$ is known as the law of
- 3. Every fuzzy complement has at most equilibrium.

P.T.O.

- 4. The property of *t*-conorm u(a,a) > a for all $a \in [0,1]$ is known as.........
- 5. If $f: X \to Y$ is a crisp function, $A \in f(x)$ and $\alpha \in [0,1]$, then $\alpha[f(A)] = f(\alpha A)$. (True/False)
- 6. A normal fuzzy set A on R such that $\propto A$ is a closed interval for each $\alpha \in (0,1]$ and ^{0+}A bounded is called a
- 7. If ${}^{\alpha}A = [2\alpha 1, 3 2\alpha]$ and ${}^{\alpha}B = [2\alpha + 1, 5 2\alpha]$, then ${}^{\alpha}(A B) = \dots$.
- 8. If A and B are fuzzy numbers, then for each $Z \in R$, A + B is a fuzzy set on R defined by $(A + B)(z) = \dots$
- 9. If R(x, y) is a fuzzy relation, then for each $x \in X$, dom $R(x) = \dots$
- 10. The standard composition of two binary fuzzy relations P(x, y) and Q(y, z) produces a binary fuzzy relation R(x, z) defined by
- 11. If R(x, x) is a fuzzy relation such that $R(x, x) \neq 1$ for some $x \in X$, then R is called relation.
- 12. A fuzzy relation R(x, x) is called antitransitive if

13. A binary relation R(x, x) that is reflexive and symmetric is called a tollerance relation. (True/False)

a b c
$$a\begin{bmatrix} 1 & .8 & 0 \\ .8 & 1 & 0 \\ c & 0 & 0 & 1 \end{bmatrix}$$
 is a binary fuzzy relation on

 $X = \{a, b, c\}, \text{ then } ^R = \dots$

- 15. X = B A is the solution of the fuzzy equation A + X = B. (True/False)
- 16. If R(x, x) and Q(y, y) are fuzzy binary relations, then a function $h: x \to y$ is said to be a fuzzy homomorphism if......
- 18. For all $A \in P(x)$, $Pl(A) = 1 Bel(\overline{A})$. (True/False)
- 19. Total ignorance is expressed in terms of the basic assignment by m (X) = 1 and m(A) = 0 for all $A \neq X$. (True/False).
- 20. For every $A, B \in P(x)$, $\text{Nec}(A \cup B) = \min [\text{Nec}(A), \text{Nec}(B)]$. (True/False)

Section - B

(Very Short Answer Type Questions)

(2 marks each)

Note- Attempt all questions.

1. If
$$A = \frac{4}{a} + \frac{3}{b} + \frac{2}{c} + \frac{0}{d} + \frac{1}{e}$$
, then find $^{0.2+}$ A

- 2. Define cartesian product of two fuzzy sets.
- 3. Define fuzzy number.
- 4. Define difference of two fuzzy numbers.
- 5. Define asymmetric fuzzy relation.
- 6. Define upper bound for a fuzzy set.
- 7. Define fuzzy relation equations.
- 8. Define fuzzy measure.

Section - C

(Short Answer Type Questions)

(3 marks each)

Note- Attempt all questions.

1. Prove that the standard fuzzy union is the only idempotent *t*-conorm.

2. Prove that every fuzzy complement has at most one equilibrium.

- 3. If $f: x \to y$ is a crisp function and $B_1, B_2 \in f(y)$, then prove that $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$.
- 4. Using fuzzy numbers, define the concept of a fuzzy cardinality for fuzzy sets that are defined on finite universal sets.
- 5. Define preordering or quasi-ordering type of binary fuzzy relation R(x, x).
- 6. Draw the graph of the following fuzzy relation on X = {a, b, c, d, e}:

For ∞ = .7 and ∞ = .9.

- 7. If $P_0^i Q = R$ and $S(Q,R) \neq \phi$, then prove that $\hat{P} = (Q_0^{oi} R^{-1})^{-1}$ is the greatest member of S(Q,R).
- 8. Let a fuzzy set *F* be defined on *N* by $F = \frac{.4}{1} + \frac{.7}{2} + \frac{1}{3} + \frac{.8}{4} + \frac{.5}{5} \text{ and } A(x) = 0 \ \forall x \notin \{1, 2, 3, 4, 5\},.$ Determine Nec(A) and Pos (A) induced by F for all $A \in P(\{1, 2, 3, 4, 5\})$.

Section - D

(Long Answer Type Questions)

(5 Marks each)

Note: Attempt all questions.

1. Let i_w denote the class of yager t-norms, then prove that $i_{\min}(a,b) \le i_w(a,b) \le \min(a,b)$ for all $a,b \in [0,1]$.

Or

State and prove first decomposition theorem on fuzzy sets.

2. Solve the fuzzy equation A + X = B, where

$$A = \frac{.2}{[0,1]} + \frac{.6}{[1,2]} + \frac{.8}{[2,3]} + \frac{.9}{[3,4]} + \frac{1}{4} + \frac{.5}{[4,5]} + \frac{.1}{[5,6]} \text{ and}$$

$$B = \frac{.1}{[0,1]} + \frac{.2}{[1,2]} + \frac{.6}{[2,3]} + \frac{.7}{[3,4]} + \frac{.8}{[4,5]} + \frac{.9}{[5,6]} + \frac{1}{6}$$

$$+\frac{.5}{[6,7]}+\frac{.4}{[7,8]}+\frac{.2}{[8,9]}+\frac{.1}{[9,10]}$$
 are two fuzzy numbers.

Or

Let R be a reflexive fuzzy relation on X^2 , where $|X| = n \ge z$. Then prove that $R_{\pi(i)} = R^{n-1}$. 3. Explain projections and cylindrical extensions with suitable example.

Or

Show that for every fuzzy partial ordering on X, the sets of undominated and undominating elements of X are nonempty.

4. Solve the fuzzy relation equation.

$$po\begin{bmatrix} .9 & .6 & 1 \\ .8 & .8 & .5 \\ .6 & .4 & .6 \end{bmatrix} = [.6 \ .6 \ .5]$$

For the max-min composition.

Or

Let $X = \{a, b, c, d\}$. Given the basic assignment $m(\{a, b, c\}) = .5$, $m(\{a, b, d\}) = .2$, and m(X) = .3, determine the corresponding belief and plausibility measures.